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The drag on a sparse random array of fixed spheres 
in flow at small but finite Reynolds number 
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The drag on a sphere in a random array of fixed spheres of volume concentration c 
(+ 1)  at Reynolds number R (4 1) is discussed. In the case when c and R2 are of the 
same order of magnitude, the drag is determined up to terms of O(R).  

1. Introduction 
This paper treats a steady flow of an incompressible Newtonian fluid through a 

sparse random array of fixed solid particles. For simplicity the particles are supposed 
to be spheres of equal radius a and distributed in a statistically homogeneous manner 
with mean number density n per unit volume. 

Brinkman (1947) considered the mean drag F on a sphere in such a flow and gave 

F =  6~apU[l+aa+ ...I, (1.1) 

where a2 = 9c/2a2, 

c = $a3n is the volume concentration of the particles, U the mean flow velocity, and 
p the fluid viscosity. His result (1.1) has been confirmed (up to terms of order d in 
the brackets of (1 .1) )  by Childress (1972), Lundgren (1972), Howells (1974) and Hinch 
(1977). 

These studies have been based on the use of the Stokes equation for the fluid 
surrounding the spheres. However, in real flows the particle Reynolds number R is 
not exactly zero, even though it may be very small. Is (1  . l )  still valid in such flows ? 

Let the particle Reynolds number R = pUa/p (p is the fluid density) be small but 
finite. As is well known in the study of low-Reynolds-number flow, the disturbance 
due to an isolated particle is not correctly described at  the outer region of the particle 
(i.e. the region where the distance from the particle is of order not smaller than a /R)  
by the use of the Stokes equation. Hence it is not surprising that the hydrodynamic 
interaction of particles is not properly taken into account by an analysis based on 
the Stokes equation when the fixed random array is so sparse that the nearest- 
neighbour particle of a particle (say A) lies mostly in the outer region of the particle 
A. This suggests that even if R 4 1, such an analysis does not always yield the 
correct asymptotic dependence of F on c for small c. 

We define here a non-dimensional drag E by 

1 F 
F(R,  c) = ~- 1 ,  67cap U 

as a measure of the strength of the effects of R and c. When both R and c are infinitely 
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small, the drag F is given by Stokes’ formula F = 6 ~ a p U ,  and fl = 0. When R is finite 
and c is infinitely small, F is given by Oseen’s formula F - 67tapU( 1 +iR), SO that  

P(R,  +0)  - $ R ;  (1.3) 

P( +o, c )  - (+$. 

while when c is finite and R is infinitely small, Brinkman’s result (1 .1)  implies 

(1.4) 

The purpose of this paper is to demonstrate that the drag F or may have a 
dependence on c basically different from Brinkman’s result ( 1.1)  or (1.4) for very small 
c if R is not zero, no matter how small R may be. For the sake of simplicity, we confme 
ourselves to the case when c and R2 are of the same order of magnitude (< 1 ) .  It will 
be shown that in this case P(R, c ) / R  depends on R and c only through c/R2 to leading 
order in R - ci, and the small effects of R and c are not simply additive. 

2. Basic equations and assumptions 

Navier4tokes equation and the continuity equation 
The fluid velocity v and the pressure p are assumed to  satisfy the steady 

p(v .V)v+Vp-pV2v = 0, v - v  = 0, (2.la,  b )  

and the boundary condition 

v = 0 on the surfaces of the spheres. (2.2) 

It is convenient to  extend the domain of definition of the flow quantities 
throughout the whole space (cf. Lundgren 1972; Howells 1974). We make the velocity 
and pressure gradient zero in the interiors of the spheres. The extended velocity field 
is then continuous everywhere and the extended velocity and pressure fields satisfy 
(2.1) inside and outside (not on the surfaces) of the spheres. We set the pressure in 
any sphere equal to the mean value at its centre. 

We shall denote the statistical ensemble average of a quantity, say q(x) ,  by (q),(x). 
We shall also denote the conditional ensemble average of q(x) ,  given a sphere centred 
a t  x,, by (q),(xIx,). Similarly the conditional average of q(x) ,  given two spheres at 
x1 and x,, shall be denoted by (q),(xlx,, x2 ) .  Where the arguments of the averaged 
fields are clear we shall sometimes omit them. 

Taking the conditional averages of (2.1) and (2.2) given a sphere centred a t  x,, we 
obtain 

p ( ( v ~ v ) ~ ~ , + ~ ~ p ~ , - p v ~ ~ ~ ~ ,  = -4  V . ( v > ,  = 0, (2.3a, b )  

and ( v ) ,  = 0 on Ix -xJ  = a ,  ( v ) , +  Ui as I x -xJ - t  co, (2.4) 

where U =  ( u ) ,  and i E U / U .  The distributed resistance d is given by (see, for 
example, Hinch 1977) 

d(xlx,) = J (a),(xlx,, x, )*n,  P ( X 2 l X l )  dA2, 
IX-X2I==U 

in which Q is the stress tensor, n2 the unit normal vector on A ,  directing into the fluid, 
and P(x,lx,) is the probability of finding a second sphere centred a t  x ,  given that 
there is one centred at x,. We take here the simplest case of a uniform probability 
P(x,Jx, )  = 3c/4xa3 (=  n) for Ix1-x21 2 2a and P(x,lx,) = 0 for Ix,-x,I < 2a. 
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In  terms of dimensionless quantities defined by 

(2.3) and (2.4) may be written as 

V2(V),-V(jj),  = R N + d ,  V * ( V ) ,  = 0, (2.5a, b )  

and ( V ) , = O  on r =  1, ( V ) , + i  asr+oO, (2.6) 

where r = %-XI, r = Irl. 
I n  order to  solve ((U),, (p),) and obtain the mean drag F, we introduce here 

assumptions on the resistance d a n d  the average E. It is known that when R = 0, 
d may be approximated by d - 0L2(i$, to a first approximation for small c ,  where 

E2 = $ + o ( c ) ,  

d - Z"V),. (2.7) 

N- ( (V), .V) ( V ) , .  (2.8) 

cf. for example Hinch (1977). We therefore assume 

Also, we note that in the dilute limit, i.e. c + O ,  N- ( (V) ,*V)  (ij),. Hence we assume 

I n  the next section we shall consider the case c = O(R2) and find the non-dimensional 
drag f = F/(pUa)  or =f/(6x)-l up to terms of O(R) by assuming (2.7) and (2.8). 
The validity of using these assumptions will be discussed at the end of the next 
section. 

3. The dependence of F on c when c is O(R2) 

unity, we try an inner expansion of the form 
If c is O(R2) ,  then 012 is O(R2).  When a2 = SR2, with S being a constant of order 

From (2.5)-(2.8) and (3.1), we obtain 

(i) in O(Ro): v2u,-vpo = 0, v-u, = 0, 

u o = O  o n r =  1, uo+i asr+oO, 

(ii) in O(R1):  v2u,-vp1 = (u;V) u,, v-u, = 0, (3.4) 

u , = O  o n r =  1.  (3.5) 

Here and hereafter in this section we sometimes omit the bar for ease of writing. 
Correspondingly to (3.1) the non-dimensional drag f is expanded as f =fo+ Rf, + . .. . 

In  the outer region, assuming 

(e), = i+RV,(F)+ ... , 
V(p) ,+E2i=  R3vP1(F)+ ... (FE Rr),  
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(iii) in O(R3) : (V- i -V-8 )  v,-OP, = 0, Q* V, = 0, (3.7a, b )  

V,+O asr-too. (3.8) 

The zeroth-order inner solution (uo, p o )  is just the well-known Stokes solution for 
the flow past a single sphere and is expanded for large r as 

u0 = i - ~ p ) + 0 ( ~ - 3 ) ,  Po = - t p ) ,  

which yields the matching condition for the first-order outer solution (V, ,  P,) 

where 

V,  - --s(?) and P, - - t (?)  as ?-to, (3.9) 

3 i+ (i-r) r / r2  3 i*r 
s(r) = - , t ( r )  = --. 

4 r 2 r3 

The field (s(r), t ( r ) )  is the so-called Stokeslet due to a force 67clS(r)i. The solution 
( V,, P,) may therefore be obtained by solving (3.7) with 67ccS(?) i on the right-hand 
side of (3.7 a).  By using three-dimensional Fourier transforms, we obtain 

Vl(?) = sJr (k )  eik"d3k (3.10a) 

(3.10 b )  
= - -3  s[r( k) - r,( k)] eikei d3k - s(?), 

4x2 

Pl(F) = - t (?) ,  ( 3 . 1 0 ~ )  

where i- k(i* k)/k2 i- k(i*k)/k2 
k2 + i(i*k) + 8 ' k2 r ( k )  = rsw = 

In  order to evaluate V, for small r", we divide the region of integration in (3.10b) 
into two parts, 0 < k < rLY and k > FY, where 0 < y < 1 (cf. Childress 1964). We 
then obtain 

[ r ( k ) - r s ( k ) ]  eikeid3k = J [w) - rS(k)l  d3k 
k d P-' 

i(i.k) [i-k(i*k)/k2] 
eikai d3k + O(P-7) + O ( P ) ,  (3.11) -5  k > P-' k4 

so that V,(f) = - s ( ? ) + A + B + o ( P )  as F + O ,  (3.12) 

[r(k) -r,(k)] d3k = Ki, 
4x2 

where 

with k2 sin 0 d8 dk,  
1 

K = -- 27c 55 (1 -cos2e) [k2+ik cos13+8-~] 
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and B is the contribution from the second term on the right-hand side of (3.11) which 
is O(P) and odd in f .  Putting cos6' = t, we obtain 

1 3 "  1 
K = - & J ,  dkJ -1 dt(1-tz)[ k2 + ikt + S k2 --1 k2 

k2 k2 
= - ~ J ~ d t ( l - t 2 ) ~  4x -" dk[ k2 + ikt + S+ k2 - ikt + S-21 ' 

The integration with respect to k can be evaluated using a contour integral. After 
some algebra we obtain 

~ 

3 
8 

K = K ( 8 )  = -[(28+ 1) (4S+ 1)i-4S2 In (3.13) 

Equations (3.12) and (3.10~) yield the matching condition for the first-order inner 
solution ( u,, p , )  : 

ul - Ki+ B, p ,  = o( r - l )  as r+ 00. 

This condition and (3.4), (3.5) suffice to determine (u,, p , ) .  It is known (see, for 
example, Brenner and Cox 1963) that the first-order non-dimensional forcef, due to 
such a field (v,, p , )  is 6xKi. While, as is well known, the zeroth-order non-dimensional 
force f, due to (u,, p, )  is 6ni, so that the dimensional mean drag F is given by 

F = apU[fo + Rf, + . . .] = 6xapu[1+ RK(S) + ... 1. (3.14) 

We are now in position to discuss the consistency of the approximations. In order 
to see the validity of assuming (2.7) and (2.8), it is convenient to write ( 2 . 5 ~ )  as 

Vz( v)l - V(p), - R(( ij),-V) ( v), - E2( v)l = RAN+ Ad, (3.15) 

where A N =  N-(( i j ) ,*V)(V), ,  A d =  d-Ziz(e),. 

Making the assumptions (2.7) and (2.8) is equivalent to neglecting RAmand Ad. These 
quantities RAN and A d  may be estimated in a way fundamentally the same as in 
Acrivos, Hinch & Jeffrey (1980, $33.3 and 4.2) as follows. 

(i) Estimation of Ad. 
We consider here the hydrodynamic interaction of two spheres centred at x1 and 

x, on the basis of the 'effective-medium' equation (3.15) with the right-hand side set 
at zero and the average ( ), replaced by the conditional average ( ),, given two 
spheres centred at  x, and x,. (cf. Vasseur & Cox 1977; Kaneda k Ishii 1982 for the 
hydrodynamic interaction between two particles in a pure solvent when R =k 0.) 

To leading order for large Ix, -x21, the x, particle exerts a non-dimensional force 
-A where from (3.14) -f= --hi with A = 6x ( l + K R +  ...). The first correction to 
the effect of the x, particle is a modification of this force due to the velocity 
disturbance (u),(x,  I x,) = (u) , (x ,  I x,) - i from the x, particle, which changes this 
force -fto, say, -fl. Here the correction sf=f'-fis given by sf= ~ ( u ) , ( x , ~ x , )  
in which /c = -h+O(R). When the x, particle is in the inner region of the x1 particle, 
the next correction is a change in the force exerted by the x, particle in response to 
a similar change to -f- dfin the force exerted by the x, particle - the so-called second 
reflection. While if the x, particle is in the outer region of the x, particle, the next 
correction is of order higher (in R) than df. 
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We assumed earlier that  P(xz I x,) = 3c/47r for I x, - X, I > 2 and P(x,  I x,) = 0 for 
I x, -x2 I < 2 (in the non-dimensional form). We now choose ol as 

3ch 
Z2 = - 

47r ' 

which implies Z2 = $+ o(c) .  Then we may write Ad as 

Ad= I dV,{P(x,lx,)~ (t~),(x'~x,, x,).n'S(x'-x)dA' 
Ix'-xoI - 1 1x1 -x*l 2 1 

- h<u),(x, I x,) S(x, - XI}. 

It can be shown from (3.10a) that  V,  decays like F3 for large r", so that the 
disturbance velocity u = u-i decays like RF3. Hence, the correction Sf is 
O ( R ( R ~ X , - ~ , I ) - ~ )  when Rlx,-x,l 2 1 .  Noting that when RIx,-x,I - r" = Rr k 1, 

and the correction next to Sf is of order smaller than Sf, we find that the force density 
Ad is of order smaller than cSf = O(cRF3) = O(R3F3) in the outer region. It is 
therefore consistent to neglect Ad in the outer equation (3.7a), while in the inner 
region the disturbance velocity decays like r - l ,  and the density Ad coming from the 
second reflection is O(cr-,) = O(R2rP2). It is therefore consistent to neglect Ad in the 
inner equations (3.2) and (3.4). 

(ii) Estimation of AN. 

Cf+sf)-h(v),(x,Ix,) = sf-A(u),(x,Ix,) = ( X - 4  (u),(~zI~,) = O(R)  x O ( R F 3 )  

If we use u' to  denote the fluctuation of u about its conditional average ( u ) , ,  then 

A N =  ( ( v ' V ) U ) , - ( ( U ) , * V ) ( U ) ,  = ( ( d . V ) d ) , .  

As c+O, the fluctuation U' is primarily due to the infrequent occurrence of a nearby 
particle, i.e. 

A N -  ~ ( < u - ( U > , > , . v ) ~ U - < u ) 1 ) 1 ~ ( ~ 2 1 X l ) d ~ 2 .  (3.16) 

For large Ix-x,I = r ,  the main contribution to this integral comes from x, near 
x. If we estimate (3.16) using the fluctuation u' for an isolated x, particle with no 
x, particle, then the integral vanishes because this fluctuation essentially gives the 
term in the bulk average ( (u '*V)u' ) ,  = ( ( u ~ V ) u ) o - ( ( u ) o o V ) ( u ) o ,  and with the 
assumption of homogeneity ( ( U ' V )  u), = &ad ((vi u ) ) ,  = 0 and V ( U ) ,  = 0 so that 
( (u '*V)  u'), = 0, where u' denotes the fluctuation of u about ( u ) , .  Hence AN decays 
asr+co.  

The x, particle induces in the neighbourhood of the x, particle a disturbance 
velocity of O(Jx,-x,I-') when Ix,-x,1 5 R-l, and O(R-2(x,-xll-3) when 
R(x, - xll k 1 .  The leading effect of the hydrodynamic interaction of two particles 
on (3.16) is a modification of the velocity disturbance around the x, particle caused 
by this velocity disturbance of O(lx2-xll-1, R-21~,-~11-3)  induced by the x, particle. 
Noting that the velocity gradient outside the x, particle is O(JX,--X,J-~, 
R-21~ , -~11-3 ) ,  we find after the integration that RAN is Ro(cF3) = o(R3F3)  in the 
outer region, and RO(c In R)  = O(R3 In R) in the inner region. It is therefore consistent 
to neglect AN in (3.2), (3.4) and (3.7). 
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4. Results and Discussion 
There are two lengthscales in the present problem: a/R (say I , )  and the shielding 

length a/ci (say 1,). The lengthscales 1, and 1, respectively become infinite as R and 
c tend to zero. If R is finite and c is small enough, i.e. 1, is finite and 1, is large enough, 
then the Oseen interactions, which cannot be described by the Stokes equation, 
become more dominant than the Stokes interactions, where we call the hydrodynamic 
interaction of two particles as Oseen (Stokes) interaction if each of them lies within 
the outer (inner) region of the other. If c = O(R2), i.e. I ,  = O(Z2), then the occurrence 
of a nearby particle in the inner region of a particle is so unlikely that the effect of 
the d-term ( -  a2(v>,, see (2.3) and (2.7)) - the so-called shielding effect - does not 
appear in the equations of motions (3.2) and (3.4) for the zeroth- and first-order inner 
fields. The effect does appear in (3.7) for the first-order outer fields, but it is to be 
noted that (3.7) also contains the term (i-0) V, which comes from the nonlinear 
convective term in the Naviel-Stokes equation ; we need take into account both the 
shielding and convective effects at the same time. 

According to (3.14), the non-dimensional drag P defined by (1.2) is given by 

P(R, C )  - RK(S), (4.1) 
where S = E2/R2 - +/R2 and K is given by (3.13), which is expanded as 

$+$AS+ ..., for small S, 

Si + &/Si + . . . , for large S. 
K(S )  = 

Thus the leading term of (4.1) for small (large) S agrees with Oseen’s formula (1.3) 
(Brinkman’s result (1.4)). The values of K are plotted in figure 1 for intermediate 
values of S. 

We may define a quantity A as a measure indicating the strength of the effect of 
the hydrodynamic interactions between particles by 

A ( R ,  C) [F(R, c ) - F ( R ,  0)]/(6nupU) = P(R, c)-P(R, 0); 

if such interactions are negligible, then A = 0. Brinkman’s result (1.1) or (1.4) implies 

(4.3) A( +0 ,  C )  - (ic)! - E, 
while (1.3), (3.14) or (4.1), and (4.2) give 

A(R, c) - R[K(4-i1 ( 4 . 4 ~ )  

for small S, - 
E-gR+--, 3 R2 for large S. 1 40E 

(4.4b) 

(4.4c) 

The dependence of A and also P on R and c (in the (R2, c)-plane) is sketched in figure 
2. If we increase S - 9c/(2R2) (but within the limit E2 = O(R2)) then, as seen in (4.4c), 
A does approach Cr in agreement with Brinkman’s result (4.3). However, the 
dependence of A on c shown by ( 4 . 4 ~ )  or (4.4b) is clearly different from (4.3), although 
both A’s  in (4.3) and (4.4) are O(d)  because c = O(R2). Figure 2 suggests a transition 
from &dependence to c/R-dependence o f A  as c is sufficiently decreased with R fixed. 

Corresponding to the fact that the shielding and convective effects cannot be 
treated separately, the small effects of c and R are not simply additive, as seen in 
(4.1) and (4.4). 
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FIQURE 1.  Log-log plot of K given by (3.13) vs. S - ic /R2 (-). K = ,$ (---) and K = 8 
(-.-.- ) are also plotted. 

I / 
/ 

0 

FIQURE 2. Dependence of A and P on R and c. Here S = a2/R2 and 3 * ic. 

Finally, we mention a similarity of the present problem with the others. As 
mentioned above, the present problem has two lengthscales I ,  = a / R  and I ,  = a/&, 
and the small effects of c and R are not simply additive in a certain range of the ratio 
lJ1,. This is also true for the problem of heat transfer from a dilute fixed bed of heated 
spheres studied by Acrivos et al. (1980), in which there are two lengthscales 1, = a / €  
and 1, = a / d ,  where E is the PBclet number. They showed that when c = O ( E ~ ) ,  i.e. 
ZJl, = 0(1), the small effects of c and E are not simply additive. Another example 
of such a problem is provided by the unsteady flow of viscous fluid past an object 
a t  finite R( + 1). This flow has two lengthscales 1, = a / R  and I ,  = a/$  (the so-called 
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skin depth), where y = wa2p/p and w represents the frequency or wv - (dldt) v.  If 
the term (dldt) v is replaced by wv, then the usual unsteady Navier-Stokes equation 
for an incompressible fluid becomes of the same form as the ‘effective-medium’ 
equation (3.15) with A d  and A m  neglected. When y = O(R2), i.e. ZJZ2 = O(1), this 
problem yields an equation similar to (3.7), cf. Bentwich & Miloh (1978) and also 
Ockendon (1968). I n  fact, (15) in Bentwich & Miloh is mathematically equivalent to  
(3.7) for axisymmetric flows; (3.12) and (3.13) could be obtained also from the stream 
function (19) in their paper. 

I am grateful to the referees for valuable comments, which are incorporated into 
the paper. 
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